Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Front Pharmacol ; 13: 853496, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2113782

RESUMEN

Background: Cytokine storm (CS) is a systemic inflammatory syndrome and a major cause of multi-organ failure and even death in COVID-19 patients. With the increasing number of COVID-19 patients, there is an urgent need to develop effective therapeutic strategies for CS. Baicalin is an anti-inflammatory and antiviral traditional Chinese medicine. In the present study, we aimed to evaluate the therapeutic mechanism of baicalin against CS through network analysis and experimental validation, and to detect key targets of CS that may bind closely to baicalin through molecular docking. Method: Access to potential targets of baicalin and CS in public databases. We constructed the protein-protein interaction (PPI) network of baicalin and CS by Cytoscape 9.0 software and performed network topology analysis of the potential targets. Then, the hub target was identified by molecular docking technique and validated in the CS model. Finally, GO and KEGG pathway functional enrichment analysis of common targets were confirmed using R language, and the location of overlapping targets in key pathways was queried via KEGG Mapper. Result: A total of 86 overlapping targets of baicalin and CS were identified, among which MAPK14, IL2, FGF2, CASP3, PTGS2, PIK3CA, EGFR, and TNF were the core targets. Moreover, it was found that baicalin bound most closely to TNF through molecular docking, and demonstrated that baicalin can effectively inhibit the elevation of TNF-α in vitro and in vivo. Furthermore, bioenrichment analysis revealed that the TNF signaling pathway and IL-17 signaling pathway may be potential key pathways for baicalin to treat CS. Conclusion: Based on this study, baicalin was identified as a potential drug for the alleviation of CS, and the possible key targets and pathways of baicalin for the treatment of CS were elucidated to reveal the main pharmacological mechanisms.

2.
Phytomedicine ; 102: 154153, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1977720

RESUMEN

BACKGROUND: The cytokine storm (CS) triggered by coronavirus disease 2019 (COVID-19) has caused serious harm to health of humanity and huge economic burden to the world, and there is a lack of effective methods to treat this complication. PURPOSE: In this research, we used network pharmacology and molecular docking to reveal the interaction mechanism in the glycyrrhetinic acid (GA) for the treatment of CS, and validated the effect of GA intervention CS by experiments. STUDY DESIGN: First, we screened corresponding target of GA and CS from online databases, and obtained the action target genes through the Venn diagram. Then, protein-protein interaction (PPI) network, Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the action target genes were acquired by R language to predict its mechanism. Next, molecular docking was performed on core targets. Finally, experiments in which GA intervened in lipopolysaccharide (LPS)-induced CS were implemented. RESULTS: 84 action target genes were obtained from online database. The PPI network of target genes showed that TNF, IL6, MAPK3, PTGS2, ESR1 and PPARG were considered as the core genes. The results of GO and KEGG showed that action target genes were closely related to inflammatory and immune related signaling pathways, such as TNF signaling pathway, IL-17 signaling pathway, Human cytomegalovirus infection, PPAR signaling pathway and so on. Molecule docking results prompted that GA had fine affinity with IL6 and TNF proteins. Finally, in vivo and in vitro experimental results showed that GA could significantly inhibit LPS-induced CS. CONCLUSION: GA has a potential inhibitory effect on CS, which is worthy of further exploration.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos , Ácido Glicirretínico , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/uso terapéutico , Humanos , Interleucina-6 , Lipopolisacáridos , Simulación del Acoplamiento Molecular
3.
Frontiers in pharmacology ; 13, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1762748

RESUMEN

Background: Cytokine storm (CS) is a systemic inflammatory syndrome and a major cause of multi-organ failure and even death in COVID-19 patients. With the increasing number of COVID-19 patients, there is an urgent need to develop effective therapeutic strategies for CS. Baicalin is an anti-inflammatory and antiviral traditional Chinese medicine. In the present study, we aimed to evaluate the therapeutic mechanism of baicalin against CS through network analysis and experimental validation, and to detect key targets of CS that may bind closely to baicalin through molecular docking. Method: Access to potential targets of baicalin and CS in public databases. We constructed the protein-protein interaction (PPI) network of baicalin and CS by Cytoscape 9.0 software and performed network topology analysis of the potential targets. Then, the hub target was identified by molecular docking technique and validated in the CS model. Finally, GO and KEGG pathway functional enrichment analysis of common targets were confirmed using R language, and the location of overlapping targets in key pathways was queried via KEGG Mapper. Result: A total of 86 overlapping targets of baicalin and CS were identified, among which MAPK14, IL2, FGF2, CASP3, PTGS2, PIK3CA, EGFR, and TNF were the core targets. Moreover, it was found that baicalin bound most closely to TNF through molecular docking, and demonstrated that baicalin can effectively inhibit the elevation of TNF-α in vitro and in vivo. Furthermore, bioenrichment analysis revealed that the TNF signaling pathway and IL-17 signaling pathway may be potential key pathways for baicalin to treat CS. Conclusion: Based on this study, baicalin was identified as a potential drug for the alleviation of CS, and the possible key targets and pathways of baicalin for the treatment of CS were elucidated to reveal the main pharmacological mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA